TAKE IT FURTHER

Activity Plus #1: PREDICTING DISTANCE USING ANGLES OPTIONAL ACTIVITY

OBJECTIVE

Take the first activity even further by recording data and creating a prediction graph.

MATERIALS

- FTD
- Launcher
- Protractor
- Tape measure
- Pencil

Protract-Tips: Tips to Get the Right Angle

- When setting the angle, it helps to put a mark on the launcher to center the protractor.
 - Always look straight down the launcher or the reading of the protractor will be off.

By making a few simple launches and graphing the results, you can predict the distance your rocket will travel when the launcher is set to a specific angle.

- Build an FTD as described in the original activity.
- Head out to the launch pad.
- Using a protractor set the launch rod so that it is angled to 60 degrees.
- Put FTD on launch rod and launch it. Make certain to keep all other variables contant!
- Measure distance between the launcher and where the FTD first hit the ground. Record the distance in the table on the right.

Launch Rod Angle (in degrees)	Distance Flown (in Feet)
15	
30	
45	
60	
75	

TAKE IT FURTHER | 1

0

LAUNCH DATA

- Set the launch rod at 45 degrees. Repeat the launch and record the distance.
- Set the launch rod at 30 degrees. Repeat the launch and record the distance.
- If time allows, you can repeat the launch using a variety of other angles.
- Using the data you have collected, mark the distance traveled for each launch angle in the graph below:

- Draw a line between the dots representing each launch degree/distance. This is the prediction line.
- Pick an angle and look on the graph where the angle line intersects the prediction line. Note the predicted distance.
- Launch using that launch angle and then record the distance.

THINK ABOUT IT

- How close was the predicted distance to the actual distance?
- If the actual distance was different from the predicted distance, what do you think might have caused the difference?
- Did weather play a factor in your actual results?
- If you had more data points from actual launches do you think that the prediction distance will be more accurate? Why or why not?
- How might you apply this information to other rocket designs or types?

2 | ROCKETS THE RESCUE